Projet ANR JCJC GLOBES

ANR-12-JS01-0007

Espaces de Berkovich globaux

2013 - 2017

 

Mini-cours

Tout au long du projet, nous dispenserons des mini-cours autour des espaces de Berkovich globaux. Ils auront lieu principalement lors des ateliers et école d'été que nous organisons.

Voici le programme:

  • Dans le cadre de la semaine spéciale Berkovich spaces and applications, les cours suivants ont été donnés: Les vidéos de ces cours sont disponibles ici.
  • Mai 2013, HSE Moscou: deux mini-cours par Antoine Ducros et Jérôme Poineau. De plus amples informations ainsi que les vidéos des cours sont disponibles ici.

    Introduction to Berkovich analytic spaces

    Abstract: At the end of the eighties, Vladimir Berkovich introduced a new way to define p-adic analytic spaces. A surprising feature is that, although p-adic fields are totally discontinuous, the resulting spaces enjoy many nice topological properties: local compactness, local path-connectedness, etc. On the whole, those spaces are very similar to complex analytic spaces. They already have found numerous applications in several domains: arithmetic geometry, dynamics, motivic integration, etc. In this course, we will introduce Berkovich spaces and study their basic properties. The program will cover the following topics: - non-Archimedean fields, absolute values - Tate algebras, affinoid algebras and their properties - affinoid spaces - Berkovich spaces - analytification of algebraic varieties - analytic curves (local structure, homotopy type) In the last lecture, we plan to give an overview of some applications.

Partenaires: ANR, IMB, IMJ, IRMA, KU Leuven, LMB, PMB, Poncelet, LMNO, UPF